
DENOISING EMG AND EEG FOR MONITORING SMALL ANIMAL
MODELS DURING NMR EXPERIMENTS

O. FOKAPU1, H. CHAHBOUNE2, M. ARMENEAN2, P.DESGOUTTE2, R.CESPUGLIO3, A.BRIGUET2

1Laboratoire GBM, UMR CNRS 6600, Université de Technologie, 60203 Compiègne France.
2Laboratoire de RMN, UMR CNRS 5012, Université Claude Bernard Lyon 1, 69616 Villeurbanne France.
3INSERM U 480, Neurobiologie, Université Claude Bernard Lyon 1, 69373, France

Abstract - The present growing field of molecular
imaging, including multimodality microimaging
techniques and spectroscopic approaches, is mainly
based on small animal studies. Monitoring such
models requires an efficient treatment and use of
electrophysiological signals which may be spoiled by
environmental effects especially when working with
nuclear magnetic resonance (NMR) since
radiofrequency (RF) pulses and magnetic field
gradient commutations may create spurious
supplementary signals. In this work, a method is
given for EEG and EMG denoising of signals
acquired during phosphorous magnetic resonance
(MR) brain spectroscopy data acquisition on a rat
model developed for sleep/awake studies. The
proposed approach is based on wavelet
decomposition and the key method is to turn into
profit the shape variations of EMG during the time
course of sleep/awake cycles. Statistical properties of
the noise are studied using EMG recorded during
paradoxical sleep as noise model. A specific
estimation of noise level using EMG recorded during
slow sleep leads to an optimal wavelet coefficients
thresholding. This approach is well suited to
improve signal to noise ratio of EEG and EMG and
to preserve small amplitude electrophysiological
signals.
Keywords : EEG, EMG, wavelet transform, noise,
wavelet shrinkage, NMR, sleep/awake states.

I. INTRODUCTION

Simultaneous acquisition of several physiological
signals is currently employed for NMR investigation of
living beings. The extracted parameters permit one to
correlate the observed variations of NMR data with
functional states for diagnostic evaluation or
physiological studies. NMR systems represent a really
hard situation due to a very particular electromagnetic
environment which may obscure small amplitude
signals [1]. For small animals, the electrophysiological
signals may be shrouded by some NMR artefacts,
consequently it is important to employ an efficient filter
before these signals are used as a monitoring reference.
Here, the considered NMR experiment is devoted to
brain phosphorous metabolites detection during sleep
and awake states on the rat model. NMR spectroscopy
[2] may represent an efficient way to observe the time
course of metabolites concentrations in tissues.
Nevertheless this method presents a rather weak
sensitivity, especially with isotopes such as 31P in
metabolites at low concentration, so it requires usually

averaging of data. In this particular application, one must
associate properly collected NMR data with their
corresponding sleep state (awake, paradoxical sleep, normal
sleep). In the present work, EEG and EMG signals are
simultaneously recorded with NMR spectroscopy data
collection on a rat brain model observed during sleep and
awake states. Considering the low amplitude levels and the
possible cross talk with NMR, it appears that conventional
signal processing approaches are not well suited because the
sleep/awake states identification is possible with clean
electrophysiological signals only. Here a method based on
wavelet decomposition is proposed and tested in order to
remove noise from EEG and EMG. Starting from the
specific properties of EMG, an algorithm was developed and
then applied to the EEG analysis as it will be indicated in the
first part of the presentation in which the denoising
technique using wavelet decomposition based applied to
EEG and EMG is given. Then a specific strategy will be
developed for sleep state identification for an efficient use in
NMR experimental conditions.

II. THEORETICAL CONSIDERATIONS

1. Electrophysiological signals and Magnetic Resonance
(MR) Environment.
During MR experiments the signal S(t) is acquired by the
EEG or EMG sensor, it does not contain the
electrophysiological information Sel(t) only, but it involves
also some “interference” components due to MR
environment. According to Felblinger [3], the signal S(t) can
be modelled by the following equation :
S(t) = Sel(t) + Sflow(t) + Smove(t) + SMR(t) + Srf(t)    (1)
In equation (1) Sel(t) represents the signal to be analysed.
Sflow(t) has its origin in the flow of electrically charged
particles through the magnetic field. Smove(t), SMR(t), Srf(t)
are induced signals due to electrical and magnetic sources
present in the environment : Smove(t) is induced by patient-
related sensor motions, Srf(t) is created by radiofrequency
pulses application and SMR(t) is due to the temporal
variations of the magnetic field gradients. In NMR
spectroscopy situation, equation (1) reduces to :
S(t) = Sel(t) + Sflow(t) + Smove(t) + Srf(t)          (2)

2. Electrophysiological signals and sleep states
relationship.
From electrophysiology, the awake state (AS) is
characterized by a fast and slight brain cortical activity with
low amplitude. Simultaneously a strong muscular activity
dealing to large amplitude signals may be observed. Normal
sleep, designed here by NS, provides slow brain cortical
waves with a weak muscular activity in parallel. During
paradoxical sleep (PS) the brain cortical activity is quite
identical to the AS one but the muscular activity disappears
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leading to a very poorly informative EMG signal. It
may be observed that in any case, spectral components
of EEG are between 1 Hz and 35 Hz and that EMG
spectral components are spread on the 100 to 500 Hz
range approximately. Since the corresponding signals
are polluted, as mentioned above, several processing
techniques may be employed to provide useful
informations from their records. To restrict the spectral
bandwidth of amplifiers is not a solution since some
noise can overcome the low frequency components of
EEG and EMG. Band-pass filtering is no longer
efficient since spectral overlap of noise and desired
components of EMG and EEG occurs. In such case, the
wavelet decomposition has proven to be particularly
suited.

3. Wavelet shrinkage for signal denoising
It has been demonstrated that the wavelet transform
method achieves a maximum number of vanishing
moments, therefore a substantial degree of separation
between signals and noise can be obtained in the
wavelet domain.
(a).White noise: In the case of an additive white and
assumed Gaussian noise, the problem consists to
estimate the real signal x(t) from its noisy realisation
designed as  :  y(t) = x(t) + b(t) (3)
where b(t) is a zero-mean Gaussian noise with a
variance σ2. If the wavelet basis is orthogonal, the white
noise stands as a white one with the same magnitude
and it is completely uncorrelated over all wavelet
scales. Consequently, equation (3) is equivalent to :
Wy = Wx + Wb (4)
where Wy, Wx and Wb are the wavelet transforms of
y(t), x(t) and b(t) respectively. To obtain an estimate of
the noise-free signal, one just has to remove the noise
contribution from Wx. In this aim, a wavelet shrinkage
technique was proposed by Donoho [4] and it consists
of shrinking each wavelet coefficient using one of the
following functions :
•  « hard- thresholding » defined as
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T denotes a fixed threshold which depends on the noise
variance. Different approaches have been proposed for

the estimation of T. )log(2 NT σ=  termed universal
threshold was proposed firstly by Donoho [4]. N
represents here the number of data samples. The noise
dispersion σ is estimated on the first scale which mainly
contains noise coefficients.
(b) Correlated noise : The case of a correlated noise has
been studied by Johnstone and Silverman [5]. They

showed that the log-variance of the noise decreases roughly
linearly with the scale. On each scale, the noise coefficients
follow approximately a Gaussian distribution. From this
statements, Johnstone and Silverman proposed a level-
dependent thresholding Ti for the wavelet coefficients

shrinkage : )log(2 iNiiT σ= , where σι is the noise
standard deviation at scale i.

III. METHOD

Successive steps of the denoising method were performed
using the EMG signal as basis of the study, and then applied
to the EEG one. The method turns into profit the shape
variations of EMG during the time course of sleep/awake
cycles. It included the following two main steps : (i) noise
modelling and statistical analysis and (ii) wavelet
coefficients thresholding.

1. Noise modelling and statistical analysis
In order to investigate more precisely the nature of the noise
corrupting EEG and EMG, we searched for a model
approaching the noise generated by the MR environment. It
is known that, during paradoxical sleep, there is a total
absence of muscular activity. Therefore, the signal captured
during this state by the EMG amplifier does not contain any
useful information. This leads to assume that noise can be
modelled by a segment of EMG recorded during the PS
state. Considering the statistical behaviour of this model and
after an orthogonal wavelet transform of a PS segment over
4 scales with Daubechies 4 , it was possible to represent the
histogram of wavelet coefficients. It was noticed that, on
each scale, the noise coefficients followed approximately a
Gaussian distribution. Consequently the white noise
hypothesis could not satisfy this situation.

2. Wavelet coefficients thresholding
EEG and EMG recorded from small animals are very weak,
the challenge is to attenuate the noise while preserving the
low amplitude signals. Instead of using a level-dependent
thresholding proposed by Johnstone and Silverman [5], an
udapted version was used here. In this adaptation, the noise
reduction was achieved by wavelet coefficients shrinkage,
using an optimal and experimental threshold Ti having the
following expression :

( )
iN

iN
iiT

)log(2
σ=    (7)

where Ni is the coefficients number and σi the noise level at
scale i.
To avoid some loosing of the signal of interest during the
wavelet shrinkage, an other manner for estimating the noise
level was considered. On each detail signal di, σi was
estimated. The optimisation of Ti was based on a specific
estimation of the noise standard deviation using a segment
of  EMG signal recorded during normal sleep (NSEMG).
The principle is described below.
(a). Use of NSEMG segment for noise estimation
On an EMG intramuscular signal, one may distinguish
active segments from no active ones. While processing



EMG signals for some specific applications, the EMG
segments which do not contain any spike potentials are
treated as noise segments and they are used to estimate
the noise standard deviation [6],[7]. In experiments, it
was observed that noise increases with muscular
activity intensity. The interference was more important
during awake phase than the NS state or than during PS.
The spike potentials and artefacts are superimposed
during this phase, making the noise detection segments
difficult. Therefore, estimation of the noise level on
NSEMG signal could be performed : In Figure 1 a raw
of NSEMG is given with details signals obtained after
the wavelet decomposition. Spike potentials appear
clearly on details. The noise standard deviation of each
detail signal could be estimated after extraction of noise
segments of the corresponding detail.
(b) Extraction of noise segments
A simple and robust algorithm was established for noise
segment extraction which included the following steps :
computation of the squares of first and second
derivatives of a given signal, specific smoothing (zero-
phase filter) of each square derivative, application of a
numerical Schmitt trigger with relative low thresholds
on the sum of smoothed squares derivatives. In order to
simplify computation and implementation, we build a
unique function noted DSF to combine derivation and
smoothing operations :

DSF = (dr1*sm5)2 + (dr2*sm5)2  (8)
where y1 = dr1* sm5, is the smoothed first derivative,
y1 = 1/32[(xn+3–x n-3 )+ 4(x n+2–x n-2) + 5(xn+1– xn-1)] ;
where y2 =dr2*sm5, is the smoothed second derivative,
y2(n)  = 1/16[xn+3 + x n-3 + 2(x n+2 – x n-2) - (x n+1 – xn-1)
– 4xn ] and where x(n) is a sequence of the input signal.
DSF is a non linear band-pass filter function allowing
the best spike potentials isolation and leading to a
valuable noise segments extraction.
The procedure was applied to each detail obtained after
the orthogonal decomposition of a NSEMG segment.
An illustration is given in Figure 2. Thus, the noise
level σi for different scales could be estimated.

3. Application
(a). Signals pre-processing
EEG and EMG signals were simultaneously recorded
and analogue band-pass filtered at 1-500Hz. For the
best representation of the information contained in each
signal, EEG and EMG were pre-processed before
denoising. EEG was numerically filtered over 1-40 Hz.
In order to take into account more precisely the
interference corrupting the EEG, the segment of
NSEMG used to estimate the noise level for EEG
denoising, was filtered in the same manner. For EMG
signals, the band-pass filter was set at 100-500Hz.
(b).Denoising
The procedure was implemented according the
denoising classical scheme including wavelet signal
decomposition, wavelet coefficients shrinkage and
reconstruction of the signals by inverse wavelet
transform. In this study, the wavelet selected for the
transformation is the Daubechies wavelet with four
vanishing moments. The reason of this choice is a good

trade off between noise reduction and over smoothing. The
thresholds Ti for wavelet coefficients shrinkage were
calculated using the experimental optimal formula where σi
are estimated using the procedure previously described.
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Fig.1 Wavelet decomposition of a NSEMG segment. (a)
raw of NSEMG signal. (b) detail components (d1,d2,d3)
obtained  on  3 scales using Daubechies (D4).
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Fig. 2 : Illustration of noise segment extraction
procedure. (a) detail component d1. (b) sum of the
squares of first and second derivatives, (c) spike potential
segments, (d) noise segments.

IV. RESULTS

Data acquisition were experimentally performed on non
anaesthetized rats. The three kinds of data (NMR, EEG and
EMG) were simultaneously collected for rather long periods,
until several hours, of spectroscopy measurements. Bipolar
electrode was screwed in the rat nape for intramuscular
EMG detection. EEG was collected on the top of the
cerebral cortex through two small electrodes. EEG and EMG
signals were analogue band-pass filtered at 1-500 Hz, and
sampled at 2 kHz. NMR signals were provided using a
surface coil fixed on the rat skull and related to a SMIS
console. A 2 teslas Oxford magnet provided the magnetic
static field (phosphorous resonance frequency 34 MHz).



The noise standard deviation was estimated from 40
seconds long NSEMG segments. The algorithm was
designed using Daubechies wavelets D4. EMG and EEG
signals were decomposed on 5 scales. Soft-
thresholding function was used for wavelet coefficients
shrinkage. In all situations EEG and EMG examination
showed a level noise significantly greater than in the
magnetic field free awake state. In Figure 3 are
displayed the results obtained with this technique
applied to EMG and EEG and corresponding to the
awake period. One may notice the relatively high noise
level corresponding to an intense muscular activity and
the performance of the denoising algorithm.

V. DISCUSSION AND CONCLUSION

The efficiency of the proposed method is mainly based
on the a priori knowledge of the noise properties and
also on the thresholding optimisation of the wavelet
coefficients. Simulation of NMR artefacts permits one
to evaluate efficiently the statistical behaviour of the
corresponding noise. The wavelet coefficients
histogram leads to conclude that spoiling through NMR
noise cannot be considered as a white and gaussian
noise superimposition, certainly because of the
particularities of sequence timing and coherent
radiofrequency excitations which are not randomly
performed. This was observed on segment
corresponding to paradoxical sleep periods. This
observation did not take into account motion artefacts
due to displacements in the static field that may be more
clearly observed during the awake state.
Thresholding optimization was achieved when taking
into account of the local noise level in order to get
efficiently small amplitude signals. Consequently the
proposed method permitted one a real cleaning of the
desired signal. Then data for sleep phase identifications

[8] were correctly determined and data averaging was no
longer an impediment for metabolism variations studies
during the sleep/awake cycle.
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Fig. 3 Results of denoising method. The top rows represent the original awake states signals, (a) EMG, (b) EEG.
 The bottom rows represent their denoised versions, (c) noise-free EMG, (d) noise-free EEG.
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